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ABSTRACT

Rabin cryptosystem is an efficient factoring-based scheme, however, its
decryption produces 4-to-1 output, which leads to decryption failure. In
this work, in order to overcome the 4-to-1 decryption problem for the Ra-
bin cryptosystem, we propose two distinct methods using the modulus of
the type N = p2q coupled with the restriction on the plaintext space M .
In the first method, the plaintext space is limited to M ∈ Zpq. For the
second method, we restrict the plaintext in the range of M ∈ (0, 22n−2).
Importantly, we prove that the decryption output of the proposed meth-
ods is unique and without decryption failure. The results in this work
indicate that the decryption problem of Rabin cryptosystem is overcome.

Keywords: Rabin cryptosystem, unique decryption, equivalent to fac-
torization.
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1. Introduction

In 1979, the Rabin cryptosystem was introduced based on the intractability
to solve the square root modulo problem of a composite integer, N = pq Rabin
(1979). This cryptosystem is the public key system that was proven equivalent
of factoring N = pq. The Rabin cryptosystem also might be considered as a
variant of the RSA cryptosystem with utilizing of the public exponent e = 2
compared to the RSA with public exponent e ≥ 3. By utilizing the public
exponent e = 2, the Rabin encryption gives a computational advantage over
the RSA cryptosystem.

In the Rabin encryption procedure, a single execution of the squaring mod-
ulo N is computed with complexity order O(n2). This is far more efficient and
faster by comparison to the RSA encryption procedure. The RSA encryption
procedure requires the calculation of at least cubic modulo N with complexity
order O(n3). Based on recent results in this area the public exponent for RSA
must be sufficiently large, thus Rabin has some advantage regarding this mat-
ter Lenstra and Verheul (2001). In the Rabin decryption procedure, it requires
computation of two modular exponentiations and computation of the Chinese
Remainder Theorem (CRT). This makes the Rabin decryption process to be
slightly faster than the RSA.

The Rabin encryption in the form C ≡M2 (mod N), where N = pq with p
and q are primes congruence 3 (mod 4) is considered to be as hard as factoring
problem. It is mathematically proven that the adversary is able to efficiently
factor the modulus N = pq then the plaintext can be recovered. It is well
established in the literature Rabin decryption process will produce four possible
plaintexts, thus introduces ambiguity to decide the correct plaintext. This
scenario is due to the process of solving the square root problem by the Chinese
Remainder Theorem (CRT).

Hence, several attempts were made by researchers with the objectives to
turn the Rabin cryptosystem to be as practical and implementable as the RSA
cryptosystem. All the previous attempts made seem to utilize one or more ad-
ditional techniques in order to obtain a unique decryption result, at the same
time resulting in a free decryption failure Rabin-like cryptosystem. Some of the
techniques to accomplish this are through manipulation of the Jacobi symbol
during the key generation process, provide extra information and also use the
concept of message padding during the encryption process. Also, it can be
accomplish by designing an encryption function with a special message struc-
ture. However, at the same time all of the designs are losing the computational
advantage of the original Rabin’s encryption over the RSA cryptosystem.
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Our Contributions. In order to engage this problem and to overcome
all the shortcomings, we revisit Rabin cryptosystem and its variants. In this
paper, our objective is to refine the Rabin encryption scheme in order to defeat
all the previous drawbacks of its original design and its variants. We present
efficient and practical methods to overcome Rabin cryptosystem decryption
failure without using the Jacobi symbol, message redundancy technique or
sending extra information in order to specify the correct plaintext. In addition,
our proposed methods produce a unique decryption result without decryption
failure and are indeed as intractable as the integer factorization problem.

Paper Organization. Section II introduces the description of the original
Rabin cryptosystem. This section also provides a survey for Rabin’s variants
and then provides a list of drawbacks from previous strategies that need to be
avoided. Section III highlights our proposed methods, along with its proof of
correctness and examples. We put a conclusion in the final section.

2. Preliminaries

2.1 Rabin Cryptosystem

The Rabin cryptosystem is defined as follow.

Algorithm 1 Rabin Key Generation Algorithm
Require: The size n of the security parameter
Ensure: The public key N and the private key (p, q).
1: Choose two random and distinct primes p and q such that 2n < p, q < 2n+1

satisfying p, q ≡ 3 (mod 4).
2: Compute N = pq.
3: Return the public key N and the private key (p, q).

Algorithm 2 Rabin Encryption Algorithm
Require: The public key N and the plaintext M .
Ensure: The ciphertext C.
1: Choose any integer M ∈ ZN

2: Compute C ≡M2 (mod N).
3: Return the ciphertext C.
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Algorithm 3 Rabin Decryption Algorithm

Require: The private key (p, q) and the ciphertext C.
Ensure: The plaintext M .
1: Compute mp ≡ C

p+1
4 (mod p).

2: Compute mq ≡ C
q+1
4 (mod q).

3: Compute two integers r and s such that rp+ sq = 1.
4: Compute M1 ≡ rpmq + sqmp (mod N).
5: Compute M2 ≡ rpmq − sqmp (mod N).
6: Compute M3 ≡ −M2 (mod N).
7: Compute M4 ≡ −M1 (mod N).
8: Return the correct plaintext M amongst the four possible candidates.

2.2 Rabin’s Variants

Since 1979, many efforts have been put into research in searching for prac-
tical and optimal Rabin cryptosystem by numerous scholars. We put forward
the summary for Rabin’s variants as follows.

In 1980, Williams Williams (1991) made an attempt to solve 4-to-1 situ-
ation of the Rabin decryption problem by incorporating the Jacobi symbol.
This scheme also known as Rabin-Williams cryptosystem. Through this tech-
nique, Rabin-Williams scheme manage to solve 4-to-1 situation of the Rabin
decryption problem with unique decryption while maintaining the property of
breaking such scheme is equivalence to factoring.

In 1988, Kurosawa et al. Kurosawa et al. (1991) use the same technique
of using the Jacobi symbol couple with the concept of extra information (two
extra bits) to solve 4-to-1 situation of the Rabin decryption problem. In the
proposed scheme, two extra bits as extra information will be computed and
send along with its ciphertext purposely to specify the correct square root.
However, due to computation of the Jacobi symbol, its result in turn leads to
additional computational cost.

In 1997, Menezes et al. Menezes et al. (1997) proposed a technique of
redundancy in the messages, which is a technique to append the plaintext with
repeating of least significant bits of the message with a pre-defined length l
before encryption process. By using this technique, the decryption process is
likely will give a unique output. However, this scheme has a probability 1

2l−1

of decryption failure Menezes et al. (1997).
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Also in 1997, Takagi Takagi (1997) proposed a Rabin-type cryptosystem
also known as Rabin-Takagi with an alternative modulus choice of N = p2q.
In 2001, Boneh Boneh (2001) proposed a scheme that does not use the Jacobi
symbol and padding or redundancy to a plaintext but the message output of
the decryption process is unique with high probability. Next, in 2002, Nishioka
et al. Nishioka et al. (2002) also made a contribution regarding the use of
modulus N = p2q as depicted earlier by Rabin-Takagi cryptosystem called
HIME(R). Basically, HIME(R) and Rabin-Takagi are quite similar in term
of performing the encryption process and solving modular square root with
modulus N = p2q as parts of their decryption process. However, the method
used by the HIME(R) decryption to solve the square roots modulo N = p2q is
significantly different from the Rabin-Takagi.

3. Our Propose Methods

In this section, we provide the details of the proposed methods. In designing
the proposed methods, we will not use the Jacobi symbol, extra information
concept and and padding or redundancy to a plaintext. The proposed methods
are defined as follows.

3.1 Method I: M ∈ Zpq and N = p2q

In the first method, we use an alternative modulus choice of N = p2q as
previously proposed by Takagi. We then impose restriction on the plaintext M
space as M ∈ Zpq.

Algorithm 4 Method I Key Generation Algorithm
Require: The size n of the security parameter
Ensure: The public key N and the private key (p, q).
1: Choose two random and distinct primes p and q such that 2n < p, q < 2n+1

satisfying p, q ≡ 3 (mod 4).
2: Compute N = pq.
3: Return the public key N and the private key (p, q).
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Algorithm 5 Method I Encryption Algorithm
Require: The public key N and the plaintext M .
Ensure: The ciphertext C.
1: Choose any integer M ∈ Zpq

2: Compute C ≡M2 (mod N).
3: Return the ciphertext C.

Algorithm 6 Method I Decryption Algorithm

Require: The private key (p, q) and the ciphertext C.
Ensure: The plaintext M .
1: Compute mp ≡ C

p+1
4 (mod p).

2: Compute mq ≡ C
q+1
4 (mod q).

3: Compute two integers r and s such that rp+ sq = 1.
4: Compute M1 ≡ rpmq + sqmp (mod pq).
5: Compute M2 ≡ rpmq − sqmp (mod pq).
6: Compute M3 ≡ −M2 (mod pq).
7: Compute M4 ≡ −M1 (mod pq).
8: For i = 1 to 4 compute Wi =

C−M2
i

N .
9: Return the correct plaintext M = Mi which produces Wi ∈ Z.

Remark 3.1. Let p and q be two distinct primes such that p, q ≡ 3 (mod 4).
Suppose Mi for 1 ≤ i ≤ 4 be the four distinct solutions of modular square roots
of M2 (mod N) using Chinese Remainder Theorem (CRT) as depicted in the
step 4 - 7 in Algorithm 6. Then we have the congruence relation of Mi for
i = 1 to 4 such that M4 ≡ −M1 (mod N) and M3 ≡ −M2 (mod N).

Remark 3.2. The correct plaintext M can be determined when the value of
Wi is a perfect integer. Thus, one proceed computing the Wi =

C−M2
i

N for
maximum four times to determine the correct M .

3.2 Method II: M ∈ (0, 22n−2) and N = p2q

In the second method, we still use an alternative modulus choice of N =
p2q as previously proposed by Takagi. However, for the plaintext M space is
restricted to M ∈ (0, 22n−2).
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Algorithm 7 Method II Key Generation Algorithm
Require: The size n of the security parameter
Ensure: The public key N and the private key (p, q).
1: Choose two random and distinct primes p and q such that 2n < p, q < 2n+1

satisfying p, q ≡ 3 (mod 4).
2: Compute N = pq.
3: Return the public key N and the private key (p, q).

Algorithm 8 Method II Encryption Algorithm
Require: The public key N and the plaintext M .
Ensure: The ciphertext C.
1: Choose any integer M ∈ (0, 22n−2)
2: Compute C ≡M2 (mod N).
3: Return the ciphertext C.

Algorithm 9 Method II Decryption Algorithm

Require: The private key (p, q) and the ciphertext C.
Ensure: The plaintext M .
1: Compute mp ≡ C

p+1
4 (mod p).

2: Compute mq ≡ C
q+1
4 (mod q).

3: Compute two integers r and s such that rp+ sq = 1.
4: Compute M1 ≡ rpmq + sqmp (mod pq).
5: Compute M2 ≡ rpmq − sqmp (mod pq).
6: Compute M3 ≡ −M2 (mod pq).
7: Compute M4 ≡ −M1 (mod pq).
8: For i = 1 to 4 compute Wi =

C−M2
i

N for Mi < 22n−1, else reject.
9: Return the correct plaintext M = Mi which produces Wi ∈ Z.

Proposition 3.1. Suppose p and q such that 2n−1 ≤ p, q ≤ 2n − 1 and Mi for
i = 1 to 4 as previously defined. Then there exist at exactly two integers of Mi

such that smaller than 22n−1.

Proof. Let p and q such that 2n−1 ≤ p, q ≤ 2n − 1 thus we will have pq ∈
(22n−1, 22n − 1). This condition implies that pq

2 ≥ 22n−2. Since we have set
M < 22n−2, hence we will get M < 22n−2 ≤ pq

2 < pq. Suppose we have
four distinct solutions Mi for i = 1 to 4. Assume that amongst the four solu-
tions, we have Ma ∈ (0, 22n−2). From Remark 3.1, we also need to compute
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−Ma (mod pq) as can be easily computed as pq − Ma. Observe that since
Ma ∈ (0, 22n−2) therefore we confirm that pq−Ma > 22n−1. For now, we need
to settle with the two other solutions. Let Ma is the other solution such that
is not equal to either Ma or pq−Ma. We need to consider two cases as follows.

Case 1: If Mb ∈ (0, 22n−2), then it follows the above explanation.

Case 2: If Mb > 22n−2, then pq −Mb < 22n−1 − 22n−2 = 22n−2, thus would
be greater or equal than 22n−2. �

Corollary 3.1. Suppose p and q such that 2n−1 ≤ p, q ≤ 2n − 1 and Mi for
i = 1 to 4 as previously defined. Then there exist exactly two integers of Mi

discarded during decryption.

Proof. As provided by Proposition 3.1, we extend the result such that exactly
two integers of Mi for i = 1 to 4 that are greater or equal than 22n−2, in which
those elements does not fall on the range of M . Hence, these two integers are
directly discarded during the decryption process. �

3.3 Proof of Correctness

The proposed methods above have produces the correct and unique solu-
tion output M during their decryption process. The proof of correctness and
uniqueness are described as follows. We will begin with the proof of correctness
followed by the proof of uniqueness.

Lemma 3.1. Let N = p2q. Choose M ∈ Zpq. If C ≡ M2 (mod N) and
V ≡ C (mod pq), then V ≡M2 (mod pq).

Proof. We have
C = M2 +Nk1 where k1 ∈ Z (1)

and
V = C + pqk2 where k2 ∈ Z (2)

From (1) and (2) we have

V = M2 +Nk1 + pqk2

Finally,
V ≡M2 (mod pq)

�
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Proposition 3.2. Let C be an integer representing a ciphertext encrypted using
the proposed methods. Then, C ≡M2 (mod N) has a unique solution for M .

Proof. We begin with the proof of correctness of the decryption procedure.
Since M ∈ Zpq, by solving V ≡ C (mod pq) using the Chinese Remainder
Theorem (CRT), we will obtain all 4 roots of V . Also by Lemma 3.1, indeed
V ≡M2 (mod pq). Furthermore, since M ∈ Zpq and pq < N , certainly one of
the roots is a solution for C ≡M2 (mod N).

We now proceed to prove uniqueness. We re-write the congruence relation
for the equation C ≡ M2 (mod N) as C = M2 − Nk with k ∈ Z. Suppose
there are two solutions M1 and M2 of the equation C = M2 −Nk with k ∈ Z,
M1 6= M2 and for i = 1, 2 and Mi < 22n−1. Then, M2

1 − Nk1 = M2
2 − Nk2.

Using N = p2q, this leads to M2
1 −M2

2 = (k1 − k2)N .

Case 1: (k1− k2)|(M2
1 −M2

2 ). The probability that (k1− k2)|(M2
1 −M2

2 ) and
not equal to zero is 2−n. Conversely, the probability that (k1− k2)|(M2

1 −M2
2 )

and equal to zero is 1 − 1
2n . Thus, M2

1 = M2
2 is with probability 1 − 1

2n and
since M ∈ Zpq, then M1 = M2. Hence, the equation C = M2 − Nk has only
one solution.

Case 2: N |(M1 + M2)(M1 − M2). The conditions that should be satisfied
is either one of the following.{

pq|(M1 ±M2)
p|(M1 ∓M2

or
{

p2|(M1 ±M2)
q|(M1 ∓M2

Observe that pq, p2 > 22n while |M1 ±M2| < 2 · 22n−1 = 22n. This implies
that either condition is not possible. Hence, the equation C = M2 − Nk has
only one solution. �

Example 3.1. Suppose we have two communicating parties, namely Bob as
the sender of a message and Alice as its corresponding receiver. Let the secu-
rity parameter n = 16.

Key generation: Alice generate two distinct primes p = 52163 and q = 52183.

1. Compute N = p2q = 141988824666127.

2. Alice keeps her private key p and q.

3. Alice publishes her public key N .
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Encryption: Bob receives Alice’s public key. He would like to send a message
M = 1323567403.

1. Compute C ≡M2 (mod N) = 114540378155610.

2. Bob sends C to Alice as his ciphertext.

Decryption: Alice receives a ciphertext C = 114540378155610 from Bob. To
decrypt C, Alice then executes:

1. Compute mp ≡ C
p+1
4 (mod p) = 16559.

2. Compute mq ≡ C
q+1
4 (mod q) = 2209.

3. Compute two integers r and s such that rp+ sq = 1 where r = 18264 and
s = −18257.

4. Compute M1 ≡ rpmq + sqmp (mod pq) = 1398454426.

5. Compute M2 ≡ rpmq − sqmp (mod pq) = 2128651145.

6. Compute M3 ≡ −M2 (mod pq) = 593370684.

7. Compute M4 ≡ −M1 (mod pq) = 1323567403.

8. Compute Wi =
C−M2

i

N where W1 = − 718421954
52163 , W2 = − 1664586635

52163 , W3 =
− 129306174

52163 and W4 = −12337.

9. Since W4 is a integer, then return the plaintext M = M4.

Example 3.2. Suppose we have two communicating parties, namely Bob as
the sender of a message and Alice as its corresponding receiver. Let the secu-
rity parameter n = 16.

Key generation: Alice generate two distinct primes p = 47087 and q = 47111.

1. Compute N = p2q = 104453829341159.

2. Alice keeps her private key p and q.

3. Alice publishes her public key N .

Encryption: Bob receives Alice’s public key. He would like to send a message
M = 949333985 < 22n−2 where 22n−2 = 1073741824.
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1. Compute C ≡M2 (mod N) = 7375520460373.

2. Bob sends C to Alice as his ciphertext.

Decryption: Alice receives a ciphertext C = 7375520460373 from Bob. To
decrypt C, Alice then executes:

1. Compute mp ≡ C
p+1
4 (mod p) = 34109.

2. Compute mq ≡ C
q+1
4 (mod q) = 46887.

3. Compute two integers r and s such that rp + sq = 1 where r = −1963
and s = 1962.

4. Compute M1 ≡ rpmq + sqmp (mod pq) = 1268981672. Ignore because
M1 > 1073741824.

5. Compute M2 ≡ rpmq − sqmp (mod pq) = 210774390.

6. Compute M3 ≡ −M2 (mod pq) = 2007541267. Ignore because M3 >
1073741824.

7. Compute M4 ≡ −M1 (mod pq) = 949333985.

8. Compute Wi =
C−M2

i

N where W2 = − 20023511
47087 and W4 = −8628.

9. Since W4 is a integer, then return the plaintext M = M4.

4. Conclusion

Through the presentation of this work, we have proposed two efficient meth-
ods to overcome the Rabin cryptosystem decryption failure. In the proposed
methods, we managed to not using the Jacobi symbol, message redundancy
technique or sending extra information in order to specify the correct plaintext.
Also, in the proposed methods we managed to maintain the use of integer fac-
torization problem as a source of security. In addition, the proposed methods
producing a unique decryption result without decryption failure are not like
the methods proposed previously. In concluding, we have overcome decryption
failure of the Rabin cryptosystem in the most effective manner as opposed to
existing methods.
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